1.

| t<br>(minutes)            | 0  | 2  | 5  | 9  | 10 |
|---------------------------|----|----|----|----|----|
| H(t)<br>(degrees Celsius) | 66 | 60 | 52 | 44 | 43 |

As a pot of tea cools, the temperature of the tea is modeled by a differentiable function H for  $0 \le t \le 10$ , where time t is measured in minutes and temperature H(t) is measured in degrees Celsius. Values of H(t) at selected values of time t are shown in the table above.

- (a) Use the data in the table to approximate the rate at which the temperature of the tea is changing at time t = 3.5. Show the computations that lead to your answer.
- (b) Using correct units, explain the meaning of  $\frac{1}{10}\int_0^{10} H(t) dt$  in the context of this problem. Use a trapezoidal

sum with the four subintervals indicated by the table to estimate  $\frac{1}{10}\int_0^{10} H(t) dt$ .

- (c) Evaluate  $\int_0^{10} H'(t) dt$ . Using correct units, explain the meaning of the expression in the context of this problem.
- (d) At time t = 0, biscuits with temperature 100°C were removed from an oven. The temperature of the biscuits at time t is modeled by a differentiable function B for which it is known that  $B'(t) = -13.84e^{-0.173t}$ . Using the given models, at time t = 10, how much cooler are the biscuits than the tea?

## 2.

The number of gallons, P(t), of a pollutant in a lake changes at the rate  $P'(t) = 1 - 3e^{-0.2\sqrt{t}}$  gallons per day, where t is measured in days. There are 50 gallons of the pollutant in the lake at time t = 0. The lake is considered to be safe when it contains 40 gallons or less of pollutant.

- (a) Is the amount of pollutant increasing at time t = 9 ? Why or why not?
- (b) For what value of t will the number of gallons of pollutant be at its minimum? Justify your answer.
- (c) Is the lake safe when the number of gallons of pollutant is at its minimum? Justify your answer.
- (d) An investigator uses the tangent line approximation to P(t) at t = 0 as a model for the amount of pollutant in the lake. At what time t does this model predict that the lake becomes safe?

The rate at which people enter an auditorium for a rock concert is modeled by the function R given by  $R(t) = 1380t^2 - 675t^3$  for  $0 \le t \le 2$  hours; R(t) is measured in people per hour. No one is in the auditorium at time t = 0, when the doors open. The doors close and the concert begins at time t = 2.

- (a) How many people are in the auditorium when the concert begins?
- (b) Find the time when the rate at which people enter the auditorium is a maximum. Justify your answer.
- (c) The total wait time for all the people in the auditorium is found by adding the time each person waits, starting at the time the person enters the auditorium and ending when the concert begins. The function w models the total wait time for all the people who enter the auditorium before time t. The derivative of w is given by w'(t) = (2 t)R(t). Find w(2) w(1), the total wait time for those who enter the auditorium after time t = 1.
- (d) On average, how long does a person wait in the auditorium for the concert to begin? Consider all people who enter the auditorium after the doors open, and use the model for total wait time from part (c).